ja511788f_si_001.pdf (919.94 kB)
Download file

Converting a Light-Driven Proton Pump into a Light-Gated Proton Channel

Download (919.94 kB)
journal contribution
posted on 11.03.2015, 00:00 authored by Keiichi Inoue, Takashi Tsukamoto, Kazumi Shimono, Yuto Suzuki, Seiji Miyauchi, Shigehiko Hayashi, Hideki Kandori, Yuki Sudo
There are two types of membrane-embedded ion transport machineries in nature. The ion pumps generate electrochemical potential by energy-coupled active ion transportation, while the ion channels produce action potential by stimulus-dependent passive ion transportation. About 80% of the amino acid residues of the light-driven proton pump archaerhodopsin-3 (AR3) and the light-gated cation channel channelrhodopsin (ChR) differ although they share the close similarity in architecture. Therefore, the question arises: How can these proteins function differently? The absorption maxima of ion pumps are red-shifted about 30–100 nm compared with ChRs, implying a structural difference in the retinal binding cavity. To modify the cavity, a blue-shifted AR3 named AR3-T was produced by replacing three residues located around the retinal (i.e., M128A, G132V, and A225T). AR3-T showed an inward H+ flux across the membrane, raising the possibility that it works as an inward H+ pump or an H+ channel. Electrophysiological experiments showed that the reverse membrane potential was nearly zero, indicating light-gated ion channeling activity of AR3-T. Spectroscopic characterization of AR3-T revealed similar photochemical properties to some of ChRs, including an all-trans retinal configuration, a strong hydrogen bond between the protonated retinal Schiff base and its counterion, and a slow photocycle. From these results, we concluded that the functional determinant in the H+ transporters is localized at the center of the membrane-spanning domain, but not in the cytoplasmic and extracellular domains.

History