sc6b01149_si_001.pdf (2.46 MB)

Controllable Synthesis of Gold Nanoparticles in Aqueous Solution by Microwave Assisted Flow Chemistry

Download (2.46 MB)
journal contribution
posted on 12.09.2016, 00:00 by Mustafa K Bayazit, Jeffrey Yue, Enhong Cao, Asterios Gavriilidis, Junwang Tang
The development of energy efficient, reproducible, and high throughput approaches to gold nanoparticle (Au-NP) synthesis has gained increasing attention over the past decades due to applications in biomedicine, sensors, and catalysis. In this work, single mode microwave irradiation is for the first time combined with microflow chemistry to fabricate Au-NPs continuously and reproducibly with controllable size in an aqueous solution. The major experimental parameters including microwave power, citrate-to-gold molar ratio ([Cit]/[Au]), and reaction residence time have been investigated systematically. As indicated by TEM, the mean particle width of the synthesized Au-NPs is between 4 and 15 nm with mean aspect ratio between ∼1.4 and 2.2 after only 90 s of microwave irradiation. Furthermore, the Au particle morphology can be manipulated from nanowires to nanoparticles by adjusting the [Cit]/[Au] ratio. HRTEM analysis of the produced Au-NPs and UV–vis spectroscopy suggests a correlation between the red-shifted surface plasmon resonance peak and the particle aspect ratio that is probably dependent on the creation of particle–particle junctions, which alter both the size and the aspect ratio of the Au-NPs. The synthesis further demonstrated high reproducibility.

History

Exports