American Chemical Society
Browse

Construction of an Antibacterial Membrane Based on Dopamine and Polyethylenimine Cross-Linked Graphene Oxide

Download (998.11 kB)
journal contribution
posted on 2019-05-13, 00:00 authored by Yongxin Zhang, Shuai Chen, Jinxia An, Hao Fu, Xinshi Wu, Chengcai Pang, Hui Gao
Bacterial infections have been considered to be one of the greatest threats to human health. In this study, a covalently cross-linked GO membrane was fabricated through vacuum-assisted filtration self-assembly after being consequentially functionalized with dopamine (GO-PDA) and branched polyethylenimine (GO-PDA-PEI). The characteristics of GO, GO-PDA, and GO-PDA-PEI membranes were confirmed by X-ray diffraction, Fourier transform infrared measurements, scanning electron microscopy images, static water contact angle measurements, etc. The GO-PDA-PEI membrane showed extraordinary stability, compared with GO and GO-PDA, confirmed by ultrasonication treatment. Notably, the GO-PDA-PEI membrane exhibited excellent antibacterial efficiency for both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli (more than 99%) upon irradiation by a 795 nm near-infrared (NIR) laser. Interestingly, the GO-PDA-PEI membrane can be recycled, that is, the photothermal effect, as well as the antibacterial activity of the GO-PDA-PEI membrane, remained the same after 5-time recycling. Hence, the proposed system has great potential for future design of recyclable, highly stable, superior bacteriostatic membrane materials.

History