la7b00191_si_001.pdf (261.92 kB)

Construction of Hierarchical Fouling Resistance Surfaces onto Poly(vinylidene fluoride) Membranes for Combating Membrane Biofouling

Download (261.92 kB)
journal contribution
posted on 28.04.2017, 15:18 by Xue Li, Xuefeng Hu, Tao Cai
Owing to the highly hydrophobic nature, fluoropolymer membranes usually suffer from serious fouling problem, and therefore largely limited their practical applications. Also, the development of environmentally benign and nonreleasing antifouling coatings onto the inert fluoropolymer membranes remains a great challenge and is of prime importance for various scientific interests and industrial applications. In the present work, a facile and effective approach for the construction of hierarchical fouling resistance surfaces onto the poly­(vinylidene fluoride) (PVDF) membranes was developed. Graft copolymers of PVDF with poly­(hyperbranched polyglycerol methacrylamide) side chains (PVDF-g-PHPGMA copolymers) were synthesized via reversible addition–fragmentation chain transfer (RAFT) graft copolymerization of pentafluorophenyl methacrylate (PFMA) with the ozone-preactivated PVDF, followed by activated ester-amine reaction of PPFMA chains with amino-terminated hyperbranched polyglycerol (HPG-NH2). The copolymers could be simply processed into microfiltration (MF) membranes with surface-tethered PHPGMA side chains on the membrane and pore surfaces by nonsolvent induced phase inversion. Furthermore, the PVDF-g-PHPGMA-g-PSBMA membrane was prepared via surface-initiated atom transfer radical polymerization (SI-ATRP) of zwitterionic monomer, N-(3-sulfopropyl)-N-(methacryloxyethyl)-N,N-dimethylammonium betaine (SBMA) from the PVDF-g-PHPGMA membrane and pore surfaces. Arise from a synergistic effect of the dendritic architecture of PHPGMA branches and “superhydrophilic” nature of PSBMA brushes, the PVDF-g-PHPGMA-g-PSBMA membranes exhibit superior resistance to protein and bacteria adhesion with insignificant cytotoxicity effects, making the membranes potentially useful for water treatment and biomedical applications. One may find the present study a general and effective method for the fabrication of antifouling fluoropolymer membranes in a controllable and green manner.

History

Exports