je200415u_si_001.pdf (101.23 kB)
Download file

Conductivities of the Ternary Systems Y(NO3)3 + Ce(NO3)3 + H2O, Y(NO3)3 + Nd(NO3)3 + H2O, Ce(NO3)3 + Nd(NO3)3 + H2O and Their Binary Subsystems at Different Temperatures

Download (101.23 kB)
journal contribution
posted on 13.10.2011, 00:00 by Yu-Feng Hu, Xiao-Ming Peng, Shan Ling, Jin-Zhu Zhang, Chuan-Wei Jin
Conductivities were measured for the ternary systems Y(NO3)3 + Ce(NO3)3 + H2O, Y(NO3)3 + Nd(NO3)3 + H2O, and Ce(NO3)3 + Nd(NO3)3 + H2O and their binary subsystems Y(NO3)3 + H2O, Ce(NO3)3 + H2O, and Nd(NO3)3 + H2O at (293.15, 298.15, and 308.15) K. The measured conductivities were used to test the generalized Young’s rule and the semi-ideal solution theory. The comparison results show that the generalized Young’s rule and the semi-ideal solution theory can yield good predictions for the conductivities of the ternary electrolyte solutions, implying that the conductivities of aqueous solutions of (1:3 + 1:3) electrolyte mixtures can be well predicted from those of their constituent binary solutions by the simple equations.

History