js9b00143_si_001.pdf (135.68 kB)
Download file

Condensed Phase Membrane Introduction Mass Spectrometry with In Situ Liquid Reagent Chemical Ionization in a Liquid Electron Ionization Source (CP-MIMS-LEI/CI)

Download (135.68 kB)
journal contribution
posted on 10.03.2020, 14:23 authored by Gregory W. Vandergrift, William Lattanzio-Battle, Erik T. Krogh, Chris G. Gill
Direct mass spectrometry has grown significantly due to wide applicability, relative ease of use, and high sample throughput. However, many current direct mass spectrometry methods are largely based on ambient ionization techniques that can suffer from matrix effects and poor selectivity. A strategy that addresses these shortcomings is condensed phase membrane introduction mass spectrometry-liquid electron ionization utilizing in situ liquid reagent chemical ionization (CP-MIMS-LEI/CI). In CP-MIMS measurements, a semipermeable hollow fiber polydimethylsiloxane membrane probe is directly immersed into a complex sample. Neutral, hydrophobic analytes permeating the membrane are entrained by a continuously flowing liquid acceptor phase (nL/min) to an LEI/CI source, where the liquid is nebulized, followed by analyte vaporization and ionization. This study marks the first intentional exploitation of the liquid CP-MIMS acceptor phase as an in situ means of providing liquid chemical ionization (CI) reagents for improved analyte sensitivity and selectivity (CP-MIMS-LEI/CI). Acetonitrile and diethyl ether were used as a combination acceptor phase/CI proton transfer reagent system for the direct analysis of dialkyl phthalates. Using isotopically labeled reagents, the gas phase ionization mechanism was found to involve reagent autoprotonation, followed by proton transfer to dialkyl phthalates. A demonstration of the applicability of CP-MIMS-LEI/CI for rapid and sensitive screening of bis­(2-ethylhexyl) phthalate in house dust samples is presented. The detection limit in house dust (6 mg/kg) is comparable to that obtained by conventional analyses, but without time-consuming sample workup or chromatographic separation steps.

History