ic6b00223_si_001.pdf (916.82 kB)
Download fileComputational Estimate of the Photophysical Capabilities of Four Series of Organometallic Iron(II) Complexes
journal contribution
posted on 2016-05-26, 13:03 authored by Isabelle M. Dixon, Gauthier Boissard, Hannah Whyte, Fabienne Alary, Jean-Louis HeullyIn
this study, we examine a large range of organometallic iron(II)
complexes with the aim of computationally identifying the most promising
ones in terms of photophysical properties. These complexes combine
polypyridine, bis(phosphine), and carbon-bound ligands. Density functional
theory has allowed us to establish a comparative Jablonski diagram
displaying the lowest singlet, triplet, and quintet states. All of
the proposed FeN5C or FeN3P2C complexes
unfavorably possess a lowest triplet state of metal-centered (MC)
nature. Among the FeN4C2 and FeN2P2C2 series, the carbene complexes display
the least favorable excited-state distribution, also having a low-lying 3MC state. Validating our design strategy, we are now able
to propose seven iron(II) complexes displaying a lowest excited state
of triplet metal-to-ligand charge-transfer nature.