ac300924b_si_001.pdf (103.33 kB)
Download file

Comprehensive Two-Dimensional Gas Chromatographic Separations with a Microfabricated Thermal Modulator

Download (103.33 kB)
journal contribution
posted on 21.08.2012, 00:00 authored by Gustavo Serrano, Dibyadeep Paul, Sung-Jin Kim, Katsuo Kurabayashi, Edward T. Zellers
Rapid, comprehensive two-dimensional gas chromatographic (GC × GC) separations by use of a microfabricated midpoint thermal modulator (μTM) are demonstrated, and the effects of various μTM design and operating parameters on performance are characterized. The two-stage μTM chip consists of two interconnected spiral etched-Si microchannels (4.2 and 2.8 cm long) with a cross section of 250 × 140 μm2, an anodically bonded Pyrex cap, and a cross-linked wall coating of poly­(dimethylsiloxane) (PDMS). Integrated heaters provide rapid, sequential heating of each μTM stage, while a proximate, underlying thermoelectric cooler provides continual cooling. The first-dimension column used for GC × GC separations was a 6 m long, 250 μm i.d. capillary with a PDMS stationary phase, and the second-dimension column was a 0.5 m long, 100 μm i.d. capillary with a poly­(ethylene glycol) phase. Using sets of five to seven volatile test compounds (boiling point ≤174 °C), the effects of the minimum (Tmin) and maximum (Tmax) modulation temperature, stage heating lag/offset (Os), modulation period (PM), and volumetric flow rate (F) on the quality of the separations were evaluated with respect to several performance metrics. Best results were obtained with a Tmin = −20 °C, Tmax = 210 °C, Os = 600 ms, PM = 6 s, and F = 0.9 mL/min. Replicate modulated peak areas and retention times were reproducible to <5%. A structured nine-component GC × GC chromatogram was produced, and a 21 component separation was achieved in <3 min. The potential for creating portable μGC × μGC systems is discussed.

History