American Chemical Society
ja2c07967_si_001.pdf (3.42 MB)

Comprehensive Thione-Derived Perylene Diimides and Their Bio-Conjugation for Simultaneous Imaging, Tracking, and Targeted Photodynamic Therapy

Download (3.42 MB)
journal contribution
posted on 2022-09-07, 14:04 authored by Yao-Lin Lee, Yi-Te Chou, Bo-Kang Su, Chi-chi Wu, Chih-Hsing Wang, Kai-Hsin Chang, Ja-an Annie Ho, Pi-Tai Chou
In this study, the chromophore 3,4,9,10-perylenetetracarboxylic diimide (PDI) is anchored with phenyl substituents at the imide N site, followed by thionation, yielding a series of thione products 1S-PDI-D, 2S-cis-PDI-D, 2S-trans-PDI-D, 3S-PDI-D, and 4S-PDI-D, respectively, with n = 1, 2, 3, and 4 thione. The photophysical properties are dependent on the number of anchored thiones, where the observed prominent lower-lying absorption is assigned to the S0 → S2(ππ*) transition and is red-shifted upon increasing the number of thiones; the lowest-lying excited state is ascribed to a transition-forbidden S1(nπ*) configuration. All nS-PDIs are non-emissive in solution but reveal an excellent two-photon absorption cross-section of >800 GM. Supported by the femtosecond transient absorption study, the S1(nπ*) → T1(ππ*) intersystem crossing (ISC) rate is > 1012 s–1, resulting in ∼100% triplet population. The lowest-lying T1(ππ*) energy is calculated to be in the order of 1S-PDI-D > 2S-cis-PDI-D2S-trans-PDI-D > 3S-PDI-D > 4S-PDI-D, where the T1 energy of 1S-PDI-D (1.10 eV) is higher than that (0.97 eV) of the 1O21Δg state. 1S-PDI-D is further modified by either conjugation with peptide FC131 on the two terminal sides, forming 1S-FC131, or linkage with peptide FC131 and cyanine5 dye on each terminal, yielding Cy5-1S-FC131. In vitro experiments show power of 1S-FC131 and Cy5-1S-FC131 in recognizing A549 cells out of other three lung normal cells and effective photodynamic therapy. In vivo, both molecular composites demonstrate outstanding antitumor ability in A549 xenografted tumor mice, where Cy5-1S-FC131 shows superiority of simultaneous fluorescence tracking and targeted photodynamic therapy.