am2c05189_si_001.pdf (1.11 MB)
Download file

Composite Assembling of Oxide-Based Optically Transparent Electrodes for High-Performance Asymmetric Supercapacitors

Download (1.11 MB)
journal contribution
posted on 2022-06-03, 10:29 authored by Meenakshi Sharma, Ravikant Adalati, Ashwani Kumar, Manan Mehta, Ramesh Chandra
Simultaneously achieving a transparent and high-energy density supercapacitor is a major challenge because of the trade-off between energy storage capacity and optical transparency of active electrode materials. Herein, we demonstrate a novel approach to construct an optically transparent asymmetric supercapacitor (Trans-ASC) by assembling positive (ZnO–SnO2) and negative (TiO2–SnO2) composite thin-film electrodes on a conductive indium-doped tin oxide substrate via reactive DC magnetron cosputtering. The optical transmittance for both composite thin films is found to be 68% (ZnO–SnO2) and 64% (TiO2–SnO2). Furthermore, electrochemical kinematics of the primed transparent electrodes are scrutinized in 0.5 M KOH electrolyte without affecting the transparency of active electrodes. The structural reliability of the electrodes aids the superb electrochemical performance to construct a Trans-ASC, TiO2–SnO2//ZnO–SnO2, which works at a voltage of +1.2 V and attains a higher areal capacitance of 44.6 mF cm–2 at 2 mA cm–2. The assembled Trans-ASC delivers a maximum areal energy density of 8.75 μW h cm–2 with an optimal areal power density of 570 μW cm–2. Additionally, the capacitance retention of 81.6% and transparency of both electrodes remain almost the same (up to 60% for ZnO–SnO2 and 62% for TiO2–SnO2) even after 10,000 charging–discharging cycles. These remarkable electrochemical properties and outstanding cycling stability of the designed Trans-ASC device make it a potential candidate for storing energy and for further use in transparent electronic devices.