American Chemical Society
am0c10910_si_001.pdf (1.04 MB)

Complementary Resistive Switching and Synaptic-Like Memory Behavior in an Epitaxial SrFeO2.5 Thin Film through Oriented Oxygen-Vacancy Channels

Download (1.04 MB)
journal contribution
posted on 2020-08-31, 20:30 authored by Venkata Raveendra Nallagatla, Jihun Kim, Kyoungjun Lee, Seung Chul Chae, Cheol Seong Hwang, Chang Uk Jung
Oxygen-vacancy-ordered brownmillerite oxides offer a reversible topotactic phase transition by significantly varying the oxygen stoichiometry of the material without losing its lattice framework. This phase transition leads to substantial changes in the physical and chemical properties of brownmillerite oxides, including electrical and ion conductivity, magnetic state, and oxygen diffusivity. In this study, the variations in the resistive switching mode of the epitaxial brownmillerite SrFeO2.5 thin film in the device were studied by systematically controlling the oxygen concentration, which could be varied by changing the compliance current during the first electroforming step. Depending on the compliance current, the SrFeO2.5 devices exhibited either low-power bipolar resistive switching or complementary resistive switching behaviors. A physical model based on the internal redistribution of oxygen ions between the interfaces with the top and the bottom electrodes was developed to explain the complementary resistive switching behavior. This model was experimentally validated using impedance spectroscopy. Finally, the gradual conductance variation in the brownmillerite SrFeO2.5 thin films was exploited to realize synaptic learning.