American Chemical Society
ja5b07257_si_002.pdf (5.04 MB)

Compartmentalization of Incompatible Catalytic Transformations for Tandem Catalysis

Download (5.04 MB)
journal contribution
posted on 2015-10-14, 00:00 authored by Jie Lu, Jonas Dimroth, Marcus Weck
In Nature, incompatible catalytic transformations are being carried out simultaneously through compartmentalization that allows for the combination of incompatible catalysts in tandem reactions. Herein, we take the compartmentalization concept to the synthetic realm and present an approach that allows two incompatible transition metal catalyzed transformations to proceed in one pot in tandem. The key is the site isolation of both catalysts through compartmentalization using a core–shell micellar support in an aqueous environment. The support is based on amphiphilic triblock copolymers of poly­(2-oxazoline)­s with orthogonal functional groups on the side chain that can be used to cross-link covalently the micelle and to conjugate two metal catalysts in different domains of the micelle. The micelle core and shell provide different microenvironments for the transformations: Co-catalyzed hydration of an alkyne proceeds in the hydrophobic core, while the Rh-catalyzed asymmetric transfer hydrogenation of the intermediate ketone into a chiral alcohol occurs in the hydrophilic shell.