jf051148a_si_001.pdf (68.37 kB)
Download file

Common Physical−Chemical Properties Correlate with Similar Structure of the IgE Epitopes of Peanut Allergens

Download (68.37 kB)
journal contribution
posted on 02.11.2005, 00:00 authored by Catherine H. Schein, Ovidiu Ivanciuc, Werner Braun
Although many sequences and linear IgE epitopes of allergenic proteins have been identified and archived in databases, structural and physicochemical discriminators that define their specific properties are lacking. Current bioinformatics tools for predicting the potential allergenicity of a novel protein use methods that were not designed to compare peptides. Novel tools to determine the quantitative sequence and three-dimensional (3D) relationships between IgE epitopes of major allergens from peanut and other foods have been implemented in the Structural Database of Allergenic Proteins (SDAP; http://fermi.utmb.edu/SDAP/). These peptide comparison tools are based on five-dimensional physicochemical property (PCP) vectors. Sequences from SDAP proteins similar in their physicochemical properties to known epitopes of Ara h 1 and Ara h 2 were identified by calculating property distance (PD) values. A 3D model of Ara h 1 was generated to visualize the 3D structure and surface exposure of the epitope regions and peptides with a low PD value to them. Many sequences similar to the known epitopes were identified in related nut allergens, and others were within the sequences of Ara h 1 and Ara h 2. Some of the sequences with low PD values correspond to other known epitopes. Regions with low PD values to one another in Ara h 1 had similar predicted structure, on opposite sides of the internal dimer axis. The PD scale detected epitope pairs that are similar in structure and/or reactivity with patient IgE. The high immunogenicity and IgE reactivity of peanut allergen proteins might be due to the proteins' arrays of similar antigenic regions on opposite sides of a single protein structure. Keywords: Food allergy; Structural Database of Allergenic Proteins (SDAP); property distance (PD) scale; MPACK; GETAREA; peptide similarity index