posted on 2020-02-13, 23:29authored byGiulia Martelli, Nora Bloise, Andrea Merlettini, Giovanna Bruni, Livia Visai, Maria Letizia Focarete, Daria Giacomini
Regulating
stem cell adhesion and growth onto functionalized biomaterial
scaffolds is an important issue in the field of tissue engineering
and regenerative medicine. In this study, new electrospun scaffolds
of poly(l-lactic acid) (PLLA), as bioresorbable polymer,
and β-lactam compounds agonists of selected integrins, as functional
components with cell adhesive properties, are designed. The new β-lactam-PLLA
scaffolds contribute significantly in guiding protein translation
involved in human bone marrow mesenchymal stem cells (hBM-MSC) adhesion
and integrin gene expression. Scanning electron microscopy, confocal
laser scanning microscopy, and Western Blot analyses reveal that GM18-PLLA
shows the best results, promoting cell adhesion by significantly driving
changes in focal adhesion proteins distribution (β1 integrin and vinculin) and activation (pFAK), with a notable increase
of GM18-targets subunits integrin gene expression, α4 and β1. These novel functionalized submicrometric
fibrous scaffolds demonstrate, for the first time, the powerful combination
of selective β-lactams agonists of integrins with biomimetic
scaffolds, suggesting a designed rule that could be suitably applied
to tissue repair and regeneration.