es403098w_si_001.pdf (5.41 MB)

Climate Change and Emissions Impacts on Atmospheric PAH Transport to the Arctic

Download (5.41 MB)
journal contribution
posted on 07.01.2014, 00:00 by Carey L. Friedman, Yanxu Zhang, Noelle E. Selin
We investigate effects of 2000–2050 emissions and climate changes on the atmospheric transport of three polycyclic aromatic hydrocarbons (PAHs): phenanthrene (PHE), pyrene (PYR), and benzo­[a]­pyrene (BaP). We use the GEOS-Chem model coupled to meteorology from a general circulation model and focus on impacts to northern hemisphere midlatitudes and the Arctic. We project declines in anthropogenic emissions (up to 20%) and concentrations (up to 37%), with particle-bound PAHs declining more, and greater declines in midlatitudes versus the Arctic. Climate change causes relatively minor increases in midlatitude concentrations for the more volatile PHE and PYR (up to 4%) and decreases (3%) for particle-bound BaP. In the Arctic, all PAHs decline slightly under future climate (up to 2%). Overall, we observe a small 2050 “climate penalty” for volatile PAHs and “climate benefit” for particle-bound PAHs. The degree of penalty or benefit depends on competition between deposition and surface-to-air fluxes of previously deposited PAHs. Particles and temperature have greater impacts on future transport than oxidants, with particle changes alone accounting for 15% of BaP decline under 2050 emissions. Higher temperatures drive increasing surface-to-air fluxes that cause PHE and PYR climate penalties. Simulations suggest ratios of more-to-less volatile species can be used to diagnose signals of climate versus emissions and that these signals are best observed in the Arctic.