American Chemical Society
bi100549y_si_001.pdf (204.37 kB)

Characterization of the Interactions of vMIP-II, and a Dimeric Variant of vMIP-II, with Glycosaminoglycans

Download (204.37 kB)
journal contribution
posted on 2010-08-24, 00:00 authored by Bo Zhao, Patricia J. LiWang
Chemokines are important immune proteins, carrying out their function by binding to glycosaminoglycans (GAGs) on the endothelial surface and to cell surface chemokine receptors. A unique viral chemokine analogue, viral macrophage inflammatory protein-II (vMIP-II), encoded by human herpesvirus-8, has garnered interest because of its ability to bind to multiple chemokine receptors, including both HIV coreceptors. In addition, vMIP-II binds to cell surface GAGs much more tightly than most human chemokines, which may be the key to its anti-inflammatory function in vivo. The goal of this work was to determine the mechanism of binding of GAG by vMIP-II. The interaction of vMIP-II with a heparin-derived disaccharide was characterized using NMR. Important binding sites were further analyzed by mutagenesis studies, in which corresponding vMIP-II mutants were tested for GAG binding ability using heparin chromatography and NMR. We found that despite having many more basic residues than some chemokines, vMIP-II shares a characteristic binding site similar to that of its human analogues, utilizing basic residues R18, R46, and R48. Interestingly, a particular mutation (Leu13Phe) caused vMIP-II to form a pH-dependent CC chemokine-type dimer as determined by analytical ultracentrifugation and NMR. To the best of our knowledge, this is the first example of engineering a naturally predominantly monomeric chemokine into a dissociable dimer by a single mutation. This dimeric vMIP-II mutant binds to heparin much more tightly than wild-type vMIP-II and provides a new model for studying the relationship between chemokine quaternary structure and various aspects of function. Structural differences between monomeric and dimeric vMIP-II upon GAG binding were characterized by NMR and molecular docking.