cn0c00642_si_001.pdf (482.39 kB)
Characterization of Homogeneous and Heterogeneous Amyloid-β42 Oligomer Preparations with Biochemical Methods and Infrared Spectroscopy Reveals a Correlation between Infrared Spectrum and Oligomer Size
journal contribution
posted on 2021-01-18, 06:06 authored by Faraz Vosough, Andreas BarthSoluble oligomers of the amyloid-β(1-42)
(Aβ42) peptide,
widely considered to be among the relevant neurotoxic species involved
in Alzheimer’s disease, were characterized with a combination
of biochemical and biophysical methods. Homogeneous and stable Aβ42
oligomers were prepared by treating monomeric solutions of the peptide
with detergents. The prepared oligomeric solutions were analyzed with
blue native and sodium dodecyl sulfate polyacrylamide gel electrophoresis,
as well as with infrared (IR) spectroscopy. The IR spectra indicated
a well-defined β-sheet structure of the prepared oligomers.
We also found a relationship between the size/molecular weight of
the Aβ42 oligomers and their IR spectra: The position of the
main amide I′ band of the peptide backbone correlated with
oligomer size, with larger oligomers being associated with lower wavenumbers.
This relationship explained the time-dependent band shift observed
in time-resolved IR studies of Aβ42 aggregation in the absence
of detergents, during which the oligomer size increased. In addition,
the bandwidth of the main IR band in the amide I′ region was
found to become narrower with time in our time-resolved aggregation
experiments, indicating a more homogeneous absorption of the β-sheets
of the oligomers after several hours of aggregation. This is predominantly
due to the consumption of smaller oligomers in the aggregation process.