Carefully Designed Hollow Mn<sub><i>x</i></sub>Co<sub>3–<i>x</i></sub>O<sub>4</sub> Polyhedron
Derived from in Situ Pyrolysis of Metal–Organic Frameworks
for Outstanding Low-Temperature Catalytic Oxidation Performance
In
this paper, three different structures of Mn<sub><i><i>x</i></i></sub>Co<sub>3‑<i>x</i></sub>O<sub>4</sub> were successfully synthesized by optimizing the heating
decomposition conditions of Mn@Co-ZIFs precursors to form three types
of Mn<sub><i><i>x</i></i></sub>Co<sub>3‑<i><i>x</i></i></sub>O<sub>4</sub> catalysts with different
morphologies, including the hollow Mn<sub><i>x</i></sub>Co<sub>3‑x</sub>O<sub>4</sub> polyhedron (HW-Mn<sub><i>x</i></sub>Co<sub>3‑<i>x</i></sub>O<sub>4</sub>), ball-in-box Mn<sub><i>x</i></sub>Co<sub>3‑<i>x</i></sub>O<sub>4</sub> polyhedron (BIB-Mn<sub><i>x</i></sub>Co<sub>3‑<i>x</i></sub>O<sub>4</sub>), and
nanoparticle Mn<sub><i>x</i></sub>Co<sub>3‑<i>x</i></sub>O<sub>4</sub> polyhedron (NP-Mn<sub><i>x</i></sub>Co<sub>3‑<i>x</i></sub>O<sub>4</sub>). Interestingly,
the structure effect of the Mn<sub><i>x</i></sub>Co<sub>3‑x</sub>O<sub>4</sub> polyhedron on the catalytic oxidation
of toluene was systematically investigated. It could be noted that
the HW-Mn<sub><i>x</i></sub>Co<sub>3‑<i>x</i></sub>O<sub>4</sub> sample exhibited superior catalytic performance,
and the complete conversion temperature of toluene (<i>T</i><sub>100</sub>) was 195 °C. Furthermore, the toluene conversion
of the HW-Mn<sub><i>x</i></sub>Co<sub>3‑<i>x</i></sub>O<sub>4</sub> sample had no significant decrease at 188 °C
for 30 h, indicating that it exhibited excellent stability for the
toluene oxidation reaction. Through a series of characterizations,
it was concluded that the morphology and structures of Mn<sub><i>x</i></sub>Co<sub>3‑<i>x</i></sub>O<sub>4</sub> catalysts could evidently alter the surface atomic ratio of Co<sup>2+</sup>/(Co<sup>3+</sup> + Co<sup>2+</sup>), the Brunauer–Emmett–Teller
(BET) surface area, the number of surface adsorbed oxygen, the interaction
between Mn and Co<sub>3</sub>O<sub>4</sub>, and so on. In particular,
we discovered that the catalytic activity of Mn<sub><i>x</i></sub>Co<sub>3‑<i>x</i></sub>O<sub>4</sub> polyhedron
was obviously improved with the increase of the surface atomic ratio
of Co<sup>2+</sup>/(Co<sup>3+</sup> + Co<sup>2+</sup>). In addition,
the large BET surface area, lots of surface adsorbed oxygen, strong
interaction between Mn and Co<sub>3</sub>O<sub>4</sub> would speed
up the catalytic oxidation of toluene.