American Chemical Society
Browse
ac6b04724_si_001.pdf (198.75 kB)

Carbon Nanotube Thread Electrochemical Cell: Detection of Heavy Metals

Download (198.75 kB)
journal contribution
posted on 2017-08-17, 00:00 authored by Daoli Zhao, David Siebold, Noe T. Alvarez, Vesselin N. Shanov, William R. Heineman
In this work, all three electrodes in an electrochemical cell were fabricated based on carbon nanotube (CNT) thread. CNT thread partially insulated with a thin polystyrene coating to define the microelectrode area was used as the working electrode; bare CNT thread was used as the auxiliary electrode; and a micro quasi-reference electrode was fabricated by electroplating CNT thread with Ag and then anodizing it in chloride solution to form a layer of AgCl. The Ag|AgCl coated CNT thread electrode provided a stable potential comparable to the conventional liquid-junction type Ag|AgCl reference electrode. The CNT thread auxiliary electrode provided a stable current, which is comparable to a Pt wire auxiliary electrode. This all-CNT thread three electrode cell has been evaluated as a microsensor for the simultaneous determination of trace levels of heavy metal ions by anodic stripping voltammetry (ASV). Hg2+, Cu2+, and Pb2+ were used as a representative system for this study. The calculated detection limits (based on the 3σ method) with a 120 s deposition time are 1.05, 0.53, and 0.57 nM for Hg2+, Cu2+, and Pb2+, respectively. These electrodes significantly reduce the dimensions of the conventional three electrode electrochemical cell to the microscale.

History