am7b14972_si_001.pdf (238.63 kB)
Download file

Carbon Dots/Prussian Blue Satellite/Core Nanocomposites for Optical Imaging and Photothermal Therapy

Download (238.63 kB)
journal contribution
posted on 18.12.2017, 00:00 by Xinyi Peng, Rui Wang, Tingjian Wang, Wanning Yang, Hao Wang, Wei Gu, Ling Ye
Integration of optical imaging modality with photothermal therapy (PTT) for simultaneously providing oncotherapy and bioimaging enables an optimized therapeutic efficacy and higher treatment accuracy and therefore has emerged as a prospective cancer treatment. However, it remains challenging to develop biocompatible PTT nanoagents capable of imaging, monitoring, and diagnosis. Carbon dots (CDs) possess unique photoluminescent (PL) properties and intrinsic biocompatibility; while Prussian blue nanoparticles (PBNPs) are nontoxic with efficient photothermal conversion capacity for PTT. Herein, a simple, cost-effective, and environmentally benign method was developed to strategically fabricate CD-decorated PBNP (CDs/PBNP) nanocomposites with satellite/core structure. The CDs/PBNPs possess distinct green PL emission and near-infrared photoabsorption with high efficiency and photothermal stability. In vitro and in vivo toxicity tests prove the biocompatibility of the CDs/PBNPs. Moreover, the applicability of CDs/PBNPs as nanotheranostic agents was tested, which suggests that CDs/PBNPs possess promising imaging and effective tumor ablation properties.