American Chemical Society
la4000846_si_001.pdf (1.42 MB)

Carbon-Binding Designer Proteins that Discriminate between sp2- and sp3‑Hybridized Carbon Surfaces

Download (1.42 MB)
journal contribution
posted on 2013-04-16, 00:00 authored by Brandon L. Coyle, Marco Rolandi, François Baneyx
Robust and simple strategies to directly functionalize graphene- and diamond-based nanostructures with proteins are of considerable interest for biologically-driven manufacturing, biosensing, and bioimaging. Here, we identify a new set of carbon-binding peptides that vary in overall hydrophobicity and charge and engineer two of these sequences (Car9 and Car15) within the framework of E. coli thioredoxin 1 (TrxA). We develop purification schemes to recover the resulting TrxA derivatives in a soluble form and conduct a detailed analysis of the mechanisms that underpin the interaction of the fusion proteins with carbonaceous surfaces. Although equilibrium quartz crystal microbalance measurements show that TrxA::Car9 and TrxA::Car15 have similar affinities for sp2-hybridized graphitic carbon (Kd = 50 and 90 nM, respectively), only the latter protein is capable of dispersing carbon nanotubes. Further investigation by surface plasmon resonance and atomic force microscopy reveals that TrxA::Car15 interacts with sp2-bonded carbon through a combination of hydrophobic and π–π interactions but that TrxA::Car9 exhibits a cooperative mode of binding that relies on a combination of electrostatics and weaker π stacking. Consequently, we find that TrxA::Car9 binds equally well to sp2- and sp3-bonded (diamondlike) carbon particles whereas TrxA::Car15 is capable of discriminating between the two carbon allotropes. Our results emphasize the importance of understanding both bulk and molecular recognition events when exploiting the adhesive properties of solid-binding peptides and proteins in technological applications.