jp500313j_si_001.pdf (2.24 MB)
Download fileCO2 Adsorption in Fe2(dobdc): A Classical Force Field Parameterized from Quantum Mechanical Calculations
journal contribution
posted on 2014-06-12, 00:00 authored by Joshua Borycz, Li-Chiang Lin, Eric D. Bloch, Jihan Kim, Allison L. Dzubak, Rémi Maurice, David Semrouni, Kyuho Lee, Berend Smit, Laura GagliardiCarbon dioxide adsorption isotherms
have been computed for the metal–organic framework (MOF) Fe2(dobdc), where dobdc4– = 2,5-dioxido-1,4-benzenedicarboxylate.
A force field derived from quantum mechanical calculations has been
used to model adsorption isotherms within a MOF. Restricted open-shell
Møller–Plesset second-order perturbation theory (ROMP2)
calculations have been performed to obtain interaction energy curves
between a CO2 molecule and a cluster model of Fe2(dobdc). The force field parameters have been optimized to best reproduced
these curves and used in Monte Carlo simulations to obtain CO2 adsorption isotherms. The experimental loading of CO2 adsorbed within Fe2(dobdc) was reproduced quite
accurately. This parametrization scheme could easily be utilized to
predict isotherms of various guests inside this and other similar
MOFs not yet synthesized.
History
Usage metrics
Categories
Keywords
Quantum Mechanical CalculationsCarbon dioxide adsorption isothermscalculationCO 2 adsorption isothermsperturbation theoryparametrization schemeinteraction energy curvesCO 2 moleculeROMPFeCO 2 Adsorptioncluster modelCO 2force fieldforce field parametersmodel adsorption isothermsMOFClassical Force Field ParameterizedMonte Carlo simulations