American Chemical Society
Browse

Branching Ratio between Proton Transfer and Electron Transfer Channels of a Bidirectional Proton-Coupled Electron Transfer

Download (413.58 kB)
journal contribution
posted on 2015-12-17, 01:42 authored by Heesun An, Kyoung Koo Baeck
Rigorous quantum dynamical study of concerted proton-coupled electron transfer (PCET) on the time scale of a few femtoseconds (fs) has been rarely reported. Herein, a time-dependent quantum wavepacket propagation method was applied to the dynamics of the charge-transfer excited electronic state of FHCl corresponding to F+HCl. The dynamics corresponds to a bidirectional PCET with two dissociation channels: the electron transfer (ET, generating FH+Cl) and proton transfer (PT, generating F+HCl) paths. The calculated branching ratio (Cl/F), 0.78, implies a surprising fact: PT prevails over ET. A detailed analysis of the proton movement and electron readjustment suggests that the proton movement starts ∼3 fs earlier than the electron movement, and the electron readjustment is triggered by the initial movement of the proton. The branching ratio drastically inverts to 1.24 because of a reduced nonadiabatic effect in the isotope-substituted system, FDCl.

History