mt0c00371_si_001.pdf (435.5 kB)

Bottom-Up Self-assembled Hydrogel-Mineral Composites Regenerate Rabbit Ulna Defect without Added Growth Factors

Download (435.5 kB)
journal contribution
posted on 01.09.2020, 20:41 by Akhil Patel, Samer H. Zaky, Hongshuai Li, Karen Schoedel, Alejandro J. Almarza, Charles Sfeir, Vinayak Sant, Shilpa Sant
Hydrogel-based biomaterials have advanced bone tissue engineering approaches in the last decade, through their ability to serve as a carrier for potent growth factor, bone morphogenic protein-2 (BMP-2). However, biophysical properties of hydrogels such as multiscale structural hierarchy and bone extracellular matrix (ECM)-mimetic microarchitecture are underutilized while designing current bone grafts. Incorporation of these properties offers great potential to create a favorable biomimetic microenvironment to harness their regenerative potential. Here, we present our approach to fabricate collagen-inspired bioactive hydrogel scaffolds (referred to as “RegenMatrix”) to guide and enhance bone regeneration in a rabbit ulna defect model through the mimicry of multiscale architecture of bone ECM, i.e., native collagen. Specifically, we employed polyelectrolyte complexation to promote bottom-up self-assembly of oppositely charged polysaccharides (chitosan and kappa-carrageenan) at multiple length scales forming fibrils, which further assemble into fibers. The self-assembly and bioinspired scaffold fabrication method resulted in robust cylindrical RegenMatrix with excellent retention of the multiscale architecture and uniform mineral deposition throughout the scaffolds. RegenMatrix, in both nonmineralized and mineralized forms, enhanced bone regeneration in the semiload-bearing ulna defect when compared to the empty defect. RegenMatrix also showed greater histocompatibility without any fibrous tissue formation. Collectively, the RegenMatrix developed in this study has a great potential as a bioactive bone graft without any added growth factors.

History

Exports