ja073788v_si_001.pdf (16.74 kB)
Download fileBorate Binding to Siderophores: Structure and Stability
journal contribution
posted on 10.10.2007, 00:00 authored by Wesley R. Harris, Shady A. Amin, Frithjof C. Küpper, David H. Green, Carl J. CarranoWell-known as specific iron chelating agents produced by bacteria, it is shown that some, but
not all, siderophore classes have an unexpected binding affinity for boron. The relevant criterium is the
availability of a vicinal dianionic oxygen containing binding group (i.e., citrate or catecholate). The resulting
boron complexes have been characterized by ESI-MS, multinuclear NMR, and DFT calculations. Detailed
boron binding constants have been measured for vibrioferrin, rhizoferrin, and petrobactin. The observed
affinity of certain siderophores for borate, a common chemical species in the marine but not the terrestrial
environment, allows for small, but potentially significant, concentrations of B-siderophores to exist at oceanic
pH. We hypothesize that these concentrations could be sufficient for them to function as cell signaling
molecules or as mediators of biological boron uptake. In addition, binding of the tetrahedral boron to these
siderophores results in a conformation that is different from either the free siderophore or its iron complex
and would thus allow a distinction to be made between its iron uptake and any putative cell signaling roles.