am0c21295_si_001.pdf (711.47 kB)
Biomimetic Soft Polymer Microstructures and Piezoresistive Graphene MEMS Sensors Using Sacrificial Metal 3D Printing
journal contribution
posted on 2021-01-04, 20:15 authored by Amar M. Kamat, Yutao Pei, Bayu Jayawardhana, Ajay Giri Prakash KottapalliRecent advances in 3D printing technology have enabled unprecedented
design freedom across an ever-expanding portfolio of materials. However,
direct 3D printing of soft polymeric materials such as polydimethylsiloxane
(PDMS) is challenging, especially for structural complexities such
as high-aspect ratio (>20) structures, 3D microfluidic channels (∼150
μm diameter), and biomimetic microstructures. This work presents
a novel processing method entailing 3D printing of a thin-walled sacrificial
metallic mold, soft polymer casting, and acidic etching of the mold.
The proposed workflow enables the facile fabrication of various complex,
bioinspired PDMS structures (e.g., 3D double helical
microfluidic channels embedded inside high-aspect ratio pillars) that
are difficult or impossible to fabricate using currently available
techniques. The microfluidic channels are further infused with conductive
graphene nanoplatelet ink to realize two flexible piezoresistive microelectromechanical
(MEMS) sensors (a bioinspired flow/tactile sensor and a dome-like
force sensor) with embedded sensing elements. The MEMS force sensor
is integrated into a Philips 9000 series electric shaver to demonstrate
its application in “smart” consumer products in the
future. Aided by current trends in industrialization and miniaturization
in metal 3D printing, the proposed workflow shows promise as a low-temperature,
scalable, and cleanroom-free technique of fabricating complex, soft
polymeric, biomimetic structures, and embedded MEMS sensors.
History
Usage metrics
Categories
Keywords
dome-like force sensorhelical microfluidic channelsPolymer Microstructuresmetal 3 D printingmaterialbiomimetic microstructuresmicrofluidic channelsnovel processing methodbioinspired PDMS structureshigh-aspect ratio pillarsPhilips 9000 seriesworkflowdesign freedom3 D printing technologyconductive graphene nanoplatelet ink3 D printingcleanroom-free technique3 Dbiomimetic structuresmoldMEMS force sensorSacrificial Metal 3 D Printingacidic etchingMEMS sensorsPiezoresistive Graphene MEMS Sensorspiezoresistive microelectromechanical