am0c20639_si_001.pdf (732.52 kB)

Bioinspired Metal-Intermetallic Laminated Composites for the Fabrication of Superhydrophobic Surfaces with Responsive Wettability

Download (732.52 kB)
journal contribution
posted on 19.01.2021, 13:42 by Jian Cao, Dejun Gao, Chun Li, Xiaoqing Si, Jianshu Jia, Junlei Qi
Hundreds of copper and titanium foils were applied to prepare biomimetic metal-intermetallic laminated composites by diffusion bonding. The cross sections of the obtained diffusion bonded bulks were etched selectively with FeCl3 solution to get regular microarray structures. This kind of microstructure was controlled accurately and promptly by simple parameter adjustment. The etched surfaces were modified with 1-dodecanethiol, and the water contact angles (WCAs) were measured. The relationship between the microstructure and wettability of the achieved material was discussed, and the reason for the anisotropic wettability was also analyzed. Then etched surfaces were anodized in different electrolyte solutions to obtain different nanostructures. The morphology and chemical compositions of the surfaces were analyzed. The surfaces with CuO nanostructures by modification show superhydrophobicity with self-cleaning, on which the WCA and water sliding angle are 160.9° and 0.8°, respectively. The surfaces with TiO2 nanostructures without modification show ultraviolet light-responsive wettability. After modification with 11-mercaptoundecanoic acid and 1-decanethiol, the surfaces also exhibit pH-responsive wettability. The superhydrophobic surfaces with responsive wettability have potential applications in biotechnology and microfluidics.

History

Exports