ja1c12888_si_001.pdf (1.87 MB)
Bioinspired Di-Fe Complexes: Correlating Structure and Proton Transfer over Four Oxidation States
journal contribution
posted on 2022-02-22, 22:05 authored by Justin
L. Lee, Saborni Biswas, Chen Sun, Joseph W. Ziller, Michael P. Hendrich, A. S. BorovikMetalloproteins with active sites
containing di-Fe cores exhibit
diverse chemical reactivity that is linked to the precise transfer
of protons and electrons which directly involve the di-Fe units. The
redox conversions are commonly corroborated by spectroscopic methods,
but the associated structural changes are often difficult to assess,
particularly those related to proton movements. This report describes
the development of di-Fe complexes in which the movements of protons
and electrons are pinpointed during the stepwise oxidation of a di-FeII species to one with an FeIIIFeIV core.
Complex formation was promoted using the phosphinic amido tripodal
ligand [poat]3– (N,N′,N″-[nitrilotris(ethane-2,1-diyl)]tris(P,P-diphenylphosphinic amido)) that provided
dynamic coordination spheres that assisted in regulating both electron
and proton transfer processes. Oxidation of an [FeII–(μ-OH)–FeIII] complex led to the corresponding di-FeIII species
containing a hydroxido bridge that was not stable at room temperature
and converted to a species containing an oxido bridging ligand and
protonation of one phosphinic amido group to form [Hpoat]2–. Deprotonation led to a new species with an [FeIII–(μ-O)–FeIII] core that could be further oxidized to its FeIIIFeIV analogue. Reactions with phenols suggest homolytic
cleavage of the O–H bond to give products that are consistent
with the initial formation of a phenoxyl radicalspectroscopic
studies indicated that the electron is transferred to the FeIV center, and the proton is initially transferred to the more sterically
hindered oxido ligand but then relocates to [poat]3–. These findings offer new mechanistic insights related to the stability
of and the reactions performed by di-Fe enzymes.
History
Usage metrics
Categories
Keywords
– h bondoxido bridging ligandassociated structural changespoat ]< suphpoat ]< sup3 – supiv supiii supii supoh )– feproton transfer processesp n )– feproton transferprecise transferspectroscopic methodsroom temperaturereport describesredox conversionspromoted usingoften difficultinitial formationhydroxido bridgegive productsfe unitsfe enzymesfe complexesdirectly involvedeprotonation ledcorrelating structurecomplex formationcommonly corroborated