ae8b02105_si_001.pdf (677.04 kB)
Download fileBeyond Colloidal Synthesis: Nanofiber Reactor to Design Self-Supported Core–Shell Pd16S7/MoS2/CNFs Electrode for Efficient and Durable Hydrogen Evolution Catalysis
journal contribution
posted on 2019-03-01, 00:00 authored by Yankun Wen, Han Zhu, Lingling Zhang, Jiace Hao, Can Wang, Songge Zhang, Shuanglong Lu, Ming Zhang, Mingliang DuDeveloping
an efficient and stable hydrogen evolution catalyst
is the core issue to promoting the wide application of hydrogen energy.
Herein, we report a novel strategy to design a self-supported core–shell
Pd16S7/MoS2/CNFs electrode by the
electrospinning technology and sulfur vapor-assisted chemical vapor
deposition. The unique Pd16S7/MoS2 core–shell structures with high content of unsaturated sulfur
atoms were synthesized in situ in the carbon nanofiber (CNF) reactors.
The formation of Pd–S–Mo nanointerfaces in Pd16S7/MoS2 core/shell heterostructures can effectively
regulate the electron orbital of MoS2 and expose more sulfur
vacancies, which were active sites for the hydrogen evolution reaction
(HER). Beyond the colloidal synthesis, the self-supported Pd16S7/MoS2/CNFs could be directly used as electrode
materials, and the electrode with excellent hydrophobic properties
can accelerate the bubble desorption during the reaction and improve
hydrogen evolution stability. The Pd16S7/MoS2/CNFs electrode affords a small overpotential of 83 mV at
a geometric current density of 10 mA cm–2 and Tafel
slope of 113 mV dec–1, suggesting a higher intrinsic
activity (88 mV at 1 mA cm–2ECSA) and
remarkable durability.
History
Usage metrics
Read the peer-reviewed publication
Categories
Keywords
novel strategyhydrogen evolution catalystTafel slopeNanofiber Reactorcarbon nanofiber83 mVsulfur vacanciesPdelectrospinning technologyMoS 2hydrogen evolution reactionbubble desorptionColloidal Synthesiscore issueECSAsulfur vapor-assisted chemical vapor depositionHERelectrode materialsDurable Hydrogen Evolution Catalysishydrogen evolution stabilityhydrogen energysulfur atomsCNF