posted on 2022-03-07, 14:12authored byTao Wang, Alejandro Berdonces-Layunta, Niklas Friedrich, Manuel Vilas-Varela, Jan Patrick Calupitan, Jose Ignacio Pascual, Diego Peña, David Casanova, Martina Corso, Dimas G. de Oteyza
Nitrogen
heteroatom doping into a triangulene molecule allows tuning
its magnetic state. However, the synthesis of the nitrogen-doped triangulene
(aza-triangulene) has been challenging. Herein, we report the successful
synthesis of aza-triangulene on the Au(111) and Ag(111) surfaces,
along with their characterizations by scanning tunneling microscopy
and spectroscopy in combination with density functional theory (DFT)
calculations. Aza-triangulenes were obtained by reducing ketone-substituted
precursors. Exposure to atomic hydrogen followed by thermal annealing
and, when necessary, manipulations with the scanning probe afforded
the target product. We demonstrate that on Au(111), aza-triangulene
donates an electron to the substrate and exhibits an open-shell triplet
ground state. This is derived from the different Kondo resonances
of the final aza-triangulene product and a series of intermediates
on Au(111). Experimentally mapped molecular orbitals match with DFT-calculated
counterparts for a positively charged aza-triangulene. In contrast,
aza-triangulene on Ag(111) receives an extra electron from the substrate
and displays a closed-shell character. Our study reveals the electronic
properties of aza-triangulene on different metal surfaces and offers
an approach for the fabrication of new hydrocarbon structures, including
reactive open-shell molecules.