posted on 2021-05-19, 04:13authored byManuela Grelich-Mucha, Ana M. Garcia, Vladimir Torbeev, Katarzyna Ożga, Łukasz Berlicki, Joanna Olesiak-Bańska
Amyloid fibrils are
peptide or protein aggregates possessing a
cross-β-sheet structure. They possess intrinsic fluorescence
property, which is still not fully understood. Herein, we compare
structural and optical properties of fibrils formed from L- and D-enantiomers
of the (105–115) fragment of transthyretin (TTR) and from their
racemic mixture. Our results show that autofluorescence of fibrils
obtained from enantiomers differs from that of fibrils from the racemic
mixture. In order to elucidate the origin of observed differences,
we analyzed the structure and morphology of fibrils and showed how
variations in β-sheet organization influence optical properties
of fibrils. We clarified the contribution of aromatic rings and the
amyloid backbone to the final blue-green emission of fibrils. This
work demonstrates how enantiomeric composition of amino acids allows
us to modulate the self-assembly and final morphology of well-defined
fibrillar bionanostructures with optical properties controlled by
supramolecular organization.