cm8b04129_si_001.pdf (2.05 MB)

Atomic Layer Deposition of Molybdenum and Tungsten Oxide Thin Films Using Heteroleptic Imido-Amidinato Precursors: Process Development, Film Characterization, and Gas Sensing Properties

Download (2.05 MB)
journal contribution
posted on 12.11.2018, 00:00 by Miika Mattinen, Jan-Lucas Wree, Niklas Stegmann, Engin Ciftyurek, Mhamed El Achhab, Peter J. King, Kenichiro Mizohata, Jyrki Räisänen, Klaus D. Schierbaum, Anjana Devi, Mikko Ritala, Markku Leskelä
Heteroleptic bis­(tert-butylimido)­bis­(N,N′-diisopropylacetamidinato) compounds of molybdenum and tungsten are introduced as precursors for atomic layer deposition of tungsten and molybdenum oxide thin films using ozone as the oxygen source. Both precursors have similar thermal properties but exhibit different growth behaviors. With the molybdenum precursor, high growth rates up to 2 Å/cycle at 300 °C and extremely uniform films are obtained, although the surface reactions are not completely saturative. The corresponding tungsten precursor enables saturative film growth with a lower growth rate of 0.45 Å/cycle at 300 °C. Highly pure films of both metal oxides are deposited, and their phase as well as stoichiometry can be tuned by changing the deposition conditions. The WOx films crystallize as γ-WO3 at 300 °C and above, whereas the films deposited at lower temperatures are amorphous. Molybdenum oxide can be deposited as either amorphous (≤250 °C), crystalline suboxide (275 °C), a mixture of suboxide and α-MoO3 (300 °C), or pure α-MoO3 (≥325 °C) films. MoOx films are further characterized by synchrotron photoemission spectroscopy and temperature-dependent resistivity measurements. A suboxide MoOx film deposited at 275 °C is demonstrated to serve as an efficient hydrogen gas sensor at a low operating temperature of 120 °C.