ac0c02466_si_001.pdf (1.22 MB)

Atomic Force Microscopy Based Top-Illumination Electrochemical Tip-Enhanced Raman Spectroscopy

Download (1.22 MB)
journal contribution
posted on 02.09.2020, 19:08 by Yi-Fan Bao, Mao-Feng Cao, Si-Si Wu, Teng-Xiang Huang, Zhi-Cong Zeng, Mao-Hua Li, Xiang Wang, Bin Ren
Electrochemical tip-enhanced Raman spectroscopy (EC-TERS) is a powerful technique for the in situ study of the physiochemical properties of the electrochemical solid/liquid interface at the nanoscale and molecular level. To further broaden the potential window of EC-TERS while extending its application to opaque samples, here, we develop a top-illumination atomic force microscopy (AFM) based EC-TERStechnique by using a water-immersion objective of a high numerical aperture to introduce the excitation laser and collect the signal. This technique not only extends the application of EC-TERS but also has a high detection sensitivity and experimental efficiency. We coat a SiO2 protection layer over the AFM-TERS tip to improve both the mechanical and chemical stability of the tip in a liquid TERS experiment. We investigate the influence of liquid on the tip–sample distance to obtain the highest TERS enhancement. We further evaluate the reliability of the as-developed EC-AFM-TERS technique by studying the electrochemical redox reaction of polyaniline. The top-illumination EC-AFM-TERS is promising for broadening the application of EC-TERS to more practical systems, including energy storage and (photo)­electrocatalysis.