ae1c03239_si_001.pdf (507.48 kB)
Download fileAtomic-Scale Understanding of Li Storage Processes in the Ti4C3 and Chemically Ordered Ti2Ta2C3 MXenes: A Theoretical and Experimental Assessment
journal contribution
posted on 2022-01-13, 23:13 authored by Daniel Maldonado-Lopez, Jassiel R. Rodriguez, Vilas G. Pol, Ravuri Syamsai, Nirmala Grace Andrews, S. J. Gutiérrez-Ojeda, Rodrigo Ponce-Pérez, Ma Guadalupe Moreno-Armenta, Jonathan Guerrero-SánchezBy
first-principles calculation and experimental measurements,
we investigated the lithiation process in the Ti4C3 and Ti2Ta2C3 MXenes. Our
results show the successful synthesis of the Ti2Ta2C3 MXene with an interlayer distance of 0.4 nm,
which supposes the correct delamination of the material. Our measurements
also demonstrate that the double-ordered alloy Ti2Ta2C3 can store 4 times the amount of lithium than
the pristine Ti4C3 MXene. By DFT calculation,
we investigated the stability of the TixTa4–xC3 MXenes. According
to the calculations, five MXenes are stable, where the most stable
50% Ta/Ti ratio structure (Ti2Ta2C3) presents a chemically ordered composition. The Li intercalation
processfor Ti4C3 and Ti2Ta2C3 MXenesis carried out as adatoms on the
surface, with the T4 site being the most favorable. The chemically
ordered MXenes provide better OCV values and can store more Li atoms
than the Ti4C3 MXene. Also, the Li diffusion
process demonstrates that Ti2Ta2C3 is a more efficient material to be employed as an anode in batteries
since it provides the lowest energy barriers. Our results demonstrate
the capability of the Ti2Ta2C3 alloy
to be employed in energy storage applications thanks to the high stability
and capacity to store Li ions in comparison with pristine Ti4C3 MXene.
History
Usage metrics
Read the peer-reviewed publication
Categories
Keywords
lowest energy barrierschemically ordered compositionli storage processesti ratio structurechemically ordered ti3 </ sub2 </ substore li ionsstore 4 times4 </ subordered alloy timeasurements also demonstratex </li atomsresults demonstrateexperimental measurements4 –<4 nmpristine ti></ sub>< subt4 sitesuccessful synthesisscale understandingresults showprinciples calculationlithiation processinterlayer distanceexperimental assessmentdft calculationcorrect delaminationbatteries since