posted on 2015-06-23, 00:00authored byRahul R. Salunkhe, Jing Tang, Yuichiro Kamachi, Teruyuki Nakato, Jung Ho Kim, Yusuke Yamauchi
Nanoporous carbon and nanoporous cobalt oxide (Co3O4) materials have been selectively prepared from a single metal–organic framework (MOF) (zeolitic imidazolate framework, ZIF-67) by optimizing the annealing conditions. The resulting ZIF-derived carbon possesses highly graphitic walls and a high specific surface area of 350 m2·g–1, while the resulting ZIF-derived nanoporous Co3O4 possesses a high specific surface area of 148 m2·g–1 with much less carbon content (1.7 at%). When nanoporous carbon and nanoporous Co3O4 were tested as electrode materials for supercapacitor application, they showed high capacitance values (272 and 504 F·g–1, respectively, at a scan rate of 5 mV·s–1). To further demonstrate the advantages of our ZIF-derived nanoporous materials, symmetric (SSCs) and asymmetric supercapacitors (ASCs) were also fabricated using nanoporous carbon and nanoporous Co3O4 electrodes. Improved capacitance performance was successfully realized for the ASC (Co3O4//carbon), better than those of the SSCs based on nanoporous carbon and nanoporous Co3O4 materials (i.e., carbon//carbon and Co3O4//Co3O4). The developed ASC with an optimal mass loading can be operated within a wide potential window of 0.0–1.6 V, which leads to a high specific energy of 36 W·h·kg–1. More interestingly, this ASC also exhibits excellent rate capability (with the highest specific power of 8000 W·kg–1 at a specific energy of 15 W·h·kg–1) combined with long-term stability up to 2000 cycles.