American Chemical Society
Browse
es9b05941_si_001.pdf (2.85 MB)

Assessment of Risks of Dioxins for Aryl Hydrocarbon Receptor-Mediated Effects in Polar Bear (Ursus maritimus) by in Vitro and in Silico Approaches

Download (2.85 MB)
journal contribution
posted on 2020-01-13, 13:11 authored by Ji-Hee Hwang, Kurunthachalam Kannan, Thomas J. Evans, Hisato Iwata, Eun-Young Kim
Polar bear (Ursus maritimus) populations accumulate dioxins and related compounds (DRCs) at levels that are of health concern. The toxicities of DRCs are primarily mediated via aryl hydrocarbon receptor (AHR) signaling pathway. To evaluate the sensitivity and responses to DRCs in polar bears, we assessed the activation potencies of polar bear-specific AHR (pbAHR) by DRCs through in vitro and in silico approaches. In vitro assays showed that the pbAHR was as sensitive to DRCs as C3H/lpr mouse AHR, which is well-known to be highly sensitive to DRCs. Comparison of pbAHR transactivation potencies indicated that TCDF, 2,3,4,7,8-PeCDF, and BaP exhibited high induction equivalency factors (IEFs). Considering the accumulation levels of DRCs in polar bears, PCB126 was found to be the most active inducer of pbAHR. The in vitro transactivation potencies of ligands of pbAHR showed a significant relationship with in silico ligand docking energies in a pbAHR homology model. The protein ligand interaction fingerprint (PLIF) analysis showed different interaction patterns depending on the ligands. Several amino acids which are highly conserved among mammals may be involved in species-specific responses via backbone interactions with neighboring amino acid residues which are specific to pbAHR. We document high susceptibility of polar bears to DRCs, through a mechanistic approach, for the first time.

History