American Chemical Society
jp0c08727_si_001.pdf (915.46 kB)

Assessing the Performance of DFT Functionals for Excited-State Properties of Pyridine-Thiophene Oligomers

Download (915.46 kB)
journal contribution
posted on 2020-12-23, 03:44 authored by Bishwanath Mahato, Aditya N. Panda
In this article, we have examined the accuracy of various density functional theory (DFT) functionals to reproduce the absorption and CD spectra of pyridine-thiophene oligomers. The performance of different levels of approximations in DFT functionals is discussed with reference to the ADC(2) results. Starting from a linear system, like monomer, calculations are carried out at ADC(2) and DFT levels till a helical system, like pentamer, is formed. For vertical excitation energies, results obtained with functionals, like CAM-B3LYP, ωB97XD, and M06-2X, are closer to the ADC(2) results. However, analysis of excited-state properties shows that the state ordering patterns or results regarding natural transition orbitals from these DFT functionals sometimes differ from the ADC(2) results. Global hybrid functionals like B3LYP and PBE0 produce excitation energies which are far away from the ADC(2) benchmark results. Similarly, pure functionals and their long-range corrected versions produce either redshifted or blueshifted energies. For the CD spectra, the above three mentioned functionals, CAM-B3LYP, ωB97XD, and M06-2X, again produce spectra closer to the benchmark spectra.