ac9b03880_si_001.pdf (1.76 MB)

Aptamer Induced Multicolored AuNCs-WS2 “Turn on” FRET Nano Platform for Dual-Color Simultaneous Detection of AflatoxinB1 and Zearalenone

Download (1.76 MB)
journal contribution
posted on 16.10.2019, 19:48 by Imran Mahmood Khan, Sobia Niazi, Ye Yu, Ali Mohsin, Bilal Sajid Mushtaq, Muhammad Waheed Iqbal, Abdur Rehman, Wasim Akhtar, Zhouping Wang
Mycotoxins posit serious threats to human and animal health, and numerous efforts have been performed to detect the multiple toxins by a single diagnostic approach. To best of our knowledge, for the first time, we synthesized an aptamer induced “turn on” fluorescence resonance energy transfer (FRET) biosensor using dual-color gold nanoclusters (AuNCs), l-proline, and BSA synthesized AuNCs (Lp-AuNCs and BSA-AuNCs), with WS2 nanosheet for simultaneous recognition of aflatoxinB1 (AFB1) and zearalenone (ZEN) by single excitation. Here, AFB1 aptamer stabilized blue-emitting AuNCs (AFB1-apt-Lp-AuNCs) (at 442 nm) and ZEN aptamer functionalized with red-colored AuNCs (ZEN-apt-BSA-AuNCs) (at 650 nm) were employed as an energy donor and WS2 nanosheet as a fluorescence quencher. With the addition of AFB1 and ZEN, the change in fluorescence intensity (F.I) was recorded at 442 and 650 nm and can be used for simultaneous recognition with a detection limit of 0.34 pg mL–1 (R2 = 0.9931) and 0.53 pg mL–1 (R2 = 0.9934), respectively. Most importantly, the semiquantitative determination of AFB1 and ZEN can also be realized through photovisualization. The current approach paves a new way to develop sensitive, selective, and convenient metal nanocluster-based fluorescent “switch-on” probes with potential applications in multipurpose biosensing.

History

Exports