nl1c04930_si_001.pdf (706.85 kB)
Approaching a Minimal Topological Electronic Structure in Antiferromagnetic Topological Insulator MnBi2Te4 via Surface Modification
journal contribution
posted on 2022-05-23, 15:04 authored by Aiji Liang, Cheng Chen, Huijun Zheng, Wei Xia, Kui Huang, Liyang Wei, Haifeng Yang, Yujie Chen, Xin Zhang, Xuguang Xu, Meixiao Wang, Yanfeng Guo, Lexian Yang, Zhongkai Liu, Yulin ChenThe
topological electronic structure plays a central role in the
nontrivial physical properties in topological quantum materials. A
minimal, “hydrogen-atom-like” topological electronic
structure is desired for research. In this work, we demonstrate an
effort toward the realization of such a system in the intrinsic magnetic
topological insulator MnBi2Te4, by manipulating
the topological surface state (TSS) via surface modification. Using
high resolution laser- and synchrotron-based angle-resolved photoemission
spectroscopy (ARPES), we found the TSS in MnBi2Te4 is heavily hybridized with a trivial Rashba-type surface state (RSS),
which could be efficiently removed by the in situ surface potassium
(K) dosing. By employing multiple experimental methods to characterize
K dosed surface, we attribute such a modification to the electrochemical
reactions of K clusters on the surface. Our work not only gives a
clear band assignment in MnBi2Te4 but also provides
possible new routes in accentuating the topological behavior in the
magnetic topological quantum materials.
History
Usage metrics
Categories
Keywords
resolved photoemission spectroscopynontrivial physical propertiesclear band assignmenttopological quantum materialstype surface statesitu surface potassium4 sub2 subtopological surface statevia surface modificationtopological behavior“ hydrogentrivial rashbarss ),heavily hybridizedelectrochemical reactionseffort towardefficiently removedcentral rolebased anglearpes ),