la9b03536_si_001.pdf (872.69 kB)
Download file

Antifouling Polymer Brushes via Oxygen-Tolerant Surface-Initiated PET-RAFT

Download (872.69 kB)
journal contribution
posted on 2020-04-15, 21:05 authored by Andriy R. Kuzmyn, Ai T. Nguyen, Lucas W. Teunissen, Han Zuilhof, Jacob Baggerman
This work presents a new method for the synthesis of antifouling polymer brushes using surface-initiated photoinduced electron transfer-reversible addition–fragmentation chain-transfer polymerization with eosin Y and triethanolamine as catalysts. This method proceeds in an aqueous environment under atmospheric conditions without any prior degassing and without the use of heavy metal catalysts. The versatility of the method is shown by using three chemically different monomers: oligo­(ethylene glycol) methacrylate, N-(2-hydroxypropyl)­methacrylamide, and carboxybetaine methacrylamide. In addition, the light-triggered nature of the polymerization allows the creation of complex three-dimensional structures. The composition and topological structuring of the brushes are confirmed by X-ray photoelectron spectroscopy and atomic force microscopy. The kinetics of the polymerizations are followed by measuring the layer thickness with ellipsometry. The polymer brushes demonstrate excellent antifouling properties when exposed to single-protein solutions and complex biological matrices such as diluted bovine serum. This method thus presents a new simple approach for the manufacturing of antifouling coatings for biomedical and biotechnological applications.