American Chemical Society
Browse
jp5b01107_si_001.pdf (2.83 MB)

All-Atomic Simulations on Human Telomeric G‑Quadruplex DNA Binding with Thioflavin T

Download (2.83 MB)
journal contribution
posted on 2015-04-16, 00:00 authored by Di Luo, Yuguang Mu
Ligand-stabilized human telomeric G-quadruplex DNA is believed to be an anticancer agent, as it can impede the continuous elongation of telomeres by telomerase in cancer cells. In this study, five well-established human telomeric G-quadruplex DNA models were probed on their binding behaviors with thioflavin T (ThT) via both conventional molecular dynamics (MD) and well-tempered metadynamics (WT-MetaD) simulations. Novel dynamics and characteristic binding patterns were disclosed by the MD simulations. It was observed that the K+ promoted parallel and hybridized human telomeric G-quadruplex conformations pose higher binding affinities to ThT than the Na+ and K+ promoted basket conformations. It is the end, sandwich, and base stacking driven by π–π interactions that are identified as the major binding mechanisms. As the most energy favorable binding mode, the sandwich stacking observed in (3 + 1) hybridized form 1 G-quadruplex conformation is triggered by reversible conformational change of the G-quadruplex. To further examine the free energy landscapes, WT-MetaD simulations were utilized on G-quadruplex–ThT systems. It is found that all of the major binding modes predicted by the MD simulations are confirmed by the WT-MetaD simulations. The results in this work not only accord with existing experimental findings, but also reinforce our understanding on the dynamics of G-quadruplexes and aid future drug developments for G-quadruplex stabilization ligands.

History