American Chemical Society
tx8b00202_si_001.pdf (192.63 kB)

Aflatoxin-Guanine DNA Adducts and Oxidatively Induced DNA Damage in Aflatoxin-Treated Mice in Vivo as Measured by Liquid Chromatography-Tandem Mass Spectrometry with Isotope Dilution

Download (192.63 kB)
journal contribution
posted on 2018-12-11, 00:00 authored by Erdem Coskun, Pawel Jaruga, Vladimir Vartanian, Onur Erdem, Patricia A. Egner, John D. Groopman, R. Stephen Lloyd, Miral Dizdaroglu
Dietary exposure to aflatoxin B1 (AFB1) is a significant contributor to the incidence of hepatocellular carcinomas globally. AFB1 exposure leads to the formation of AFB1-N7-guanine (AFB1-N7-Gua) and two diastereomers of the imidazole ring-opened 8,9-dihydro-8-(2,6-diamino-4-oxo-3,4-dihydropyrimid-5-yl-formamido)-9-hydroxyaflatoxin B1 (AFB1-FapyGua) in DNA. These adducts lead to G → T transversion mutations with the ring-opened adduct being more mutagenic than the cationic species. Accurate measurement of these three adducts as biomarkers in DNA and urine will help identify dietary exposure to AFB1 as a risk factor in the development of hepatocellular carcinoma worldwide. Herein, we report an improved methodology for the measurement of AFB1-N7-Gua and the two diastereomers of AFB1-FapyGua using liquid chromatography-tandem mass spectrometry with isotope dilution. We measured the levels of these compounds in liver DNA of six control mice and six AFB1-treated mice. Levels varying from 1.5 to 45 lesions/106 DNA bases in AFB1-treated mice were detected depending on the compound and animal. No background levels of these adducts were detected in control mice. We also tested whether the AFB1 treatment caused oxidatively induced DNA base damage using gas chromatography-tandem mass spectrometry with isotope dilution. Although background levels of several pyrimidine- and purine-derived lesions were detected, no increases in these levels were found upon AFB1 treatment of mice. On the other hand, significantly increased levels of (5′R)- and (5′S)-8,5′-cyclo-2′-deoxyadenosines were observed in liver DNA of AFB1-treated mice. The impact of this work is expected to achieve the accurate measurement of three AFB1-DNA adducts and oxidatively induced DNA lesions as biomarkers of AFB1 exposure as germane to investigations designed for the prevention of aflatoxin-related hepatocellular carcinomas and for determining the effects of genetic deficiencies in human populations.