American Chemical Society
cm3c00813_si_001.pdf (9.7 MB)

Acid-Assisted Soft Chemical Route for Preparing High-Quality Superconducting 2M-WS2

Download (9.7 MB)
journal contribution
posted on 2023-07-13, 22:03 authored by Xiaoyu Song, Brianna Hoff, Ratnadwip Singha, Joseph W. Stiles, Grigorii Skorupskii, Jason F. Khoury, Guangming Cheng, Franziska Kamm, Ayelet J. Uzan, Stephanie Dulovic, Sanfeng Wu, Florian Pielnhofer, Nan Yao, Leslie M. Schoop
2M-WS2 is a metastable, superconducting polymorph of the transition metal dichalcogenide (TMD) WS2, comprised of layers of face-sharing distorted WS6 octahedra. It is predicted to host non-Abelian quantum states, promising for topological computing. Due to its thermodynamic instability, 2M-WS2 cannot be synthesized using solid-state synthesis. Rather, it requires a top-down approach in which K+ is deintercalated from KxWS2; so far, this process has been completed using a strong oxidizer, K2Cr2O7 in dilute H2SO4. A disadvantage of such an indirect synthesis is that the harsh reaction condition may cause the crystal quality to suffer. To date, no studies have been performed to optimize the synthesis or understand the chemical nature of this reaction. In this study, we found that the K-deintercalation process from KxWS2 is spontaneous, and a non-oxidative acidic reaction environment is sufficient to facilitate the oxidation of KxWS2 to 2M-WS2 while reducing H+ to H2. By analyzing the superconducting transition in the heat capacity, we found that 2M-WS2 made using less aggressive methods has higher superconducting volume fractions. We describe how to access the thermodynamically unfavorable superconducting 2M phase of WS2 as high-quality crystals.