am1c02146_si_001.pdf (1.11 MB)

Achieving Highly Efficient Carbon Dioxide Electrolysis by In Situ Construction of the Heterostructure

Download (1.11 MB)
journal contribution
posted on 22.04.2021, 19:53 by Xiaoxia Yang, Wang Sun, Minjian Ma, Chunming Xu, Rongzheng Ren, Jinshuo Qiao, Zhenhua Wang, Zesheng Li, Shuying Zhen, Kening Sun
The design of active cathode catalysts, with abundant active sites and outstanding catalytic activity for CO2 electroreduction, is important to promote the development of solid oxide electrolysis cells (SOECs). Herein, A-site-deficient perovskite oxide (La0.2Sr0.8)0.9Ti0.5Mn0.4Cu0.1O3−δ (LSTMC) is synthesized and studied as a promising cathode for SOECs. Cu nanoparticles can be rapidly and uniformly in situ-exsolved under reducing conditions. The heterostructure formed by the exsoluted Cu and LSTMC provides abundant active sites for the catalytic conversion of CO2 to CO. Combined with the remarkable oxygen-ion transport capacity of the LSTMC substrate, the specially designed Cu@LSTMC cathode exhibits a dramatically improved electrochemical performance. Furthermore, first-principles calculations proposed a mechanism for the adsorption and activation of CO2 by the heterostructure. Electrochemically, the Cu@LSTMC presents a high current density of 2.82 A cm–2 at 1.8 V and 800 °C, which is about 2.5 times higher than that of LSTM (1.09A cm–2).