jz9b01156_si_001.pdf (3.48 MB)

Accurate and Efficient ab Initio Calculations for Supramolecular Complexes: Symmetry-Adapted Perturbation Theory with Many-Body Dispersion

Download (3.48 MB)
journal contribution
posted on 07.05.2019, 00:00 by Kevin Carter-Fenk, Ka Un Lao, Kuan-Yu Liu, John M. Herbert
Symmetry-adapted perturbation theory (SAPT) provides a chemically meaningful energy decomposition scheme for nonbonded interactions that is useful for interpretive purposes. Although formally a dimer theory, we have previously introduced an “extended” version (XSAPT) that incorporates many-body polarization via self-consistent charge embedding. Here, we extend the XSAPT methodology to include nonadditive dispersion, using a modified form of the many-body dispersion (MBD) method of Tkatchenko and co-workers. Dispersion interactions beyond the pairwise atom–atom approximation improve total interaction energies even in small systems, and for large π-stacked complexes these corrections can amount to several kilocalories per mole. The XSAPT+MBD method introduced here achieves errors of ≲1 kcal/mol (as compared to high-level ab initio benchmarks) for the L7 data set of large dispersion-bound complexes and ≲4 kcal/mol (as compared to experiment) for the S30L data set of host–guest complexes. This is superior to the best contemporary density functional methods for noncovalent interactions, at comparable or lower cost. XSAPT+MBD represents a promising method for application to supramolecular assemblies, including protein–ligand binding.

History

Exports