American Chemical Society
ac402025c_si_001.pdf (1.09 MB)

Absolute Quantification of a Steroid Hormone that Regulates Development in Caenorhabditis elegans

Download (1.09 MB)
journal contribution
posted on 2016-02-18, 19:06 authored by Tie-Mei Li, Jie Chen, Xiangke Li, Xiao-Jun Ding, Yao Wu, Li-Feng Zhao, She Chen, Xiaoguang Lei, Meng-Qiu Dong
Under favorable conditions, Caenorhabditis elegans larvae grow into reproductive adults after a series of molting cycles. When environmental conditions are harsh, they arrest as dauer larvae. Dafachronic acid (DA), a C. elegans steroid hormone, is required for reproductive development. Here, we report a mass spectrometry (MS) method for absolute quantitation of DA in C. elegans. The extraction of DA from C. elegans was optimized to achieve a recovery rate of greater than 83%. The MS sensitivity to DA increased 100-fold after carboxyl group derivatization with 2-picolylamine. High-resolution selected ion monitoring (HR-SIM) on a Q-Orbitrap mass spectrometer Q Exactive outperformed targeted-MS2 on the same instrument and selected reaction monitoring (SRM) on a triple-quadrupole mass spectrometer TSQ Quantum Discovery. With a limit of quantification as low as 1 pg of DA, the HR-SIM method enables absolute quantification of endogenous DA during the reproductive development of C. elegans. We found that in wild-type (WT) worms, DA increases from 0.04 ± 0.02 ng/mg protein in the L1 larval stage to 1.21 ± 0.67 ng/mg protein in the L2 larval stage and decreases again after the L3 stage. In comparison, four genetic mutants that have a constitutive dauer-formation phenotype due to disrupted insulin, TGF-β, or cGMP signaling all have a very low DA level in the L2 stage (below 15% of the WT). These mutants are able to escape the dauer fate and most of them grow into fertile adults when supplied with exogenous DA. Therefore, a DA spike in the L2 stage is critical for the reproductive development of C. elegans.