ac8b00694_si_002.pdf (94.31 kB)
Download file

A Two-Step Immunocapture LC/MS/MS Assay for Plasma Stability and Payload Migration Assessment of Cysteine–Maleimide-Based Antibody Drug Conjugates

Download (94.31 kB)
journal contribution
posted on 2018-04-24, 13:33 authored by Linlin Dong, Chao Li, Charles Locuson, Susan Chen, Mark G. Qian
Plasma stability assessment under physiological temperature is an essential step for developing and optimizing antibody drug conjugate (ADC) molecules, especially those with cleavable linkers. The assessment of plasma stability often requires monitoring multiple analytes using a combination of bioanalytical assays for free payloads, conjugated payloads (or conjugated antibodies), total antibodies, and payloads that have migrated from antibodies to plasma constituent proteins. Bioanalytical assays are needed in early drug discovery to quickly screen diverse ADC candidates of different antibody constructs, linker variants, and antibody anchor sites. To improve the sensitivity and selectivity of LC/MS/MS-based assays for the assessment, immunocapture has been widely used for extracting ADCs and unconjugated antibodies from plasma samples. In this study, a novel two-step immunocapture LC/MS/MS assay was described to allow the quantification of conjugated payloads, total antibodies, and migrated payloads forming adducts with albumin in the plasma samples for stability assessment. A target antigen immobilized on magnetic beads was used to exhaustively extract the ADC and antibody-associated species. The remaining supernatant was then extracted further with anti-albumin beads for recovering the albumin-associated adducts for quantification. The method was optimized for higher efficiency and cost-effectiveness using microwave enhanced papain-based enzymatic cleavage for measuring conjugated payloads of ADCs and lysyl endopeptidase cleavage in the total antibody assay. A maleimide linker-based ADC with a proprietary payload, TAK-001, was used to demonstrate the streamlined workflow of the ADC stability assessment. The method could provide valuable evaluation of the stability of the ADC as well as the quantitative assessment of the albumin adducts formed from the linker-payload migration in mouse and human plasma. Furthermore, the method should be readily adaptable for other ADCs using thiol–maleimide conjugation chemistry.

History