posted on 2008-10-01, 00:00authored byQingzhu Zhang, Shanqing Li, Xiaohui Qu, Xiangyan Shi, Wenxing Wang
The most direct route to the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in combustion and thermal processes is the gas-phase reaction of chemical precursors such as chlorinated phenols. Detailed insight into the mechanism and kinetics properties is a prerequisite for understanding the formation of PCDD/Fs. In this paper, we carried out molecular orbital theory calculations for the homogeneous gas-phase formation of PCDD/Fs from 2-chlorophenol (2-CP). The profiles of the potential energy surface were constructed, and the possible formation pathways are discussed. The single-point energy calculation was carried out at the MPWB1K/6−311+G(3f,2p) level. Several energetically favorable formation pathways were revealed for the first time. The rate constants of crucial elementary steps were deduced over a wide temperature range of 600∼1200 K using canonical variational transition-state theory (CVT) with small curvature tunneling contribution (SCT). The rate-temperature formulas were fitted. The ratio of PCDD to PCDF formed shows strong dependency on the reaction temperature and chlorophenoxy radicals (CPRs) concentration.