ja110338e_si_001.pdf (968.2 kB)

A Free-Energy Landscape for Coupled Folding and Binding of an Intrinsically Disordered Protein in Explicit Solvent from Detailed All-Atom Computations

Download (968.2 kB)
journal contribution
posted on 13.07.2011, 00:00 by Junichi Higo, Yoshifumi Nishimura, Haruki Nakamura
The N-terminal repressor domain of neural restrictive silencer factor (NRSF) is an intrinsically disordered protein (IDP) that binds to the paired amphipathic helix (PAH) domain of mSin3. An NMR experiment revealed that the minimal binding unit of NRSF is a 15-residue segment that adopts a helical structure upon binding to a cleft of mSin3. We computed a free-energy landscape of this system by an enhanced conformational sampling method, all-atom multicanonical molecular dynamics. The simulation started from a configuration where the NRSF segment was fully disordered and distant from mSin3 in explicit solvent. In the absence of mSin3, the disordered NRSF segment thermally fluctuated between hairpins, helices, and bent structures. In the presence of mSin3, the segment bound to mSin3 by adopting the structures involved in the isolated state, and non-native and native complexes were formed. The free-energy landscape comprised three superclusters, and free-energy barriers separated the superclusters. The native complex was located at the center of the lowest free-energy cluster. When NRSF landed in the largest supercluster, the generated non-native complex moved on the landscape to fold into the native complex, by increasing the interfacial hydrophobic contacts and the helix content. When NRSF landed in other superclusters, the non-native complex overcame the free-energy barriers between the various segment orientations in the binding cleft of mSin3. Both population-shift and induced-fit (or induced-folding) mechanisms work cooperatively in the coupled folding and binding. The diverse structural adaptability of NRSF may be related to the hub properties of the IDP.