posted on 2021-08-16, 21:14authored byMatteo Briganti, Fabio Santanni, Lorenzo Tesi, Federico Totti, Roberta Sessoli, Alessandro Lunghi
The unique electronic
and magnetic properties of lanthanide molecular
complexes place them at the forefront of the race toward high-temperature
single-molecule magnets and magnetic quantum bits. The design of compounds
of this class has so far being almost exclusively driven by static
crystal field considerations, with an emphasis on increasing the magnetic
anisotropy barrier. Now that this guideline has reached its maximum
potential, a deeper understanding of spin-phonon relaxation mechanisms
presents itself as key in order to drive synthetic chemistry beyond
simple intuition. In this work, we compute relaxation times fully ab initio and unveil the nature of all spin-phonon relaxation
mechanisms, namely Orbach and Raman pathways, in a prototypical Dy
single-molecule magnet. Computational predictions are in agreement
with the experimental determination of spin relaxation time and crystal
field anisotropy, and show that Raman relaxation, dominating at low
temperature, is triggered by low-energy phonons and little affected
by further engineering of crystal field axiality. A comprehensive
analysis of spin-phonon coupling mechanism reveals that molecular
vibrations beyond the ion’s first coordination shell can also
assume a prominent role in spin relaxation through an electrostatic
polarization effect. Therefore, this work shows the way forward in
the field by delivering a novel and complete set of chemically sound
design rules tackling every aspect of spin relaxation at any temperature.